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An explicit Ising-spin lattice Hamiltonian is proposed as a model for studying 
the phase diagrams of micellar binary solutions on the micellar length scale. 
Incorporating many essential features, it can be used to check the validity of a 
previously suggested scenario for nonuniversality at the consotute point. 
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Multicomponent systems incorporating surfactants (amphiphilic molecules) 
in solution with water and/or oil exhibit very interesting behavior as tem- 
perature T and surfactant concentration cs are varied. Experimental studies 
show that the amphiphiles self-associate into micelles, bilayers, and vesicles 
of various shapes and sizes. 2 In micellar binary solutions (MBS), e.g., 
surfactants and water only, the aggregates typically have one "narrow" 
dimension limited by the length of two amphiphiles. As one varies T and 
cs, the system displays a variety of distributions of aggregates: a mono- 
disperse distribution of spherical micelles (zero-dimensional aggregates), a 
polydisperse distribution of rodlike micelles (one-dimensional aggregates), 
or bilayers (two-dimensional aggregates). 3 The aggregates may form either 
an isotropic liquid phase or a variety of condensed lyotropic mesophases. 4 

Typical T-c~ phase diagram for nonionic MBS of polyoxyethylene 
glycole monoethers, CH3(CH2)n_IO(CH2CH20)mH (commonly abre- 

1 Center for Transport Theory and Mathematical Physics and Physics Department, Virginia 
Polytechnic Institute and State University, Blacksburg, Virginia 24061. 

z For an introduction see Ref. 1. 
3 A simple thermodynamic theory of micellar structure in MBS is given in Ref. 2. 
4 For a description of various lytropic mesophases found in surfactant/water systems see 

Ref. 3. 
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viated as CnEm), in water, can be found in Ref. 4. The lyotropic meso- 
phases appear at low-T and high-cs regions. At higher T and above the 
critical micelled concentration (CMC), these MBS exhibit a phase 
separation curve with a lower consolute point, from a single isotropic 
liquid phase into two similar phases, one micelle-rich and the other micelle- 
poor, all three phases containing either a monodisperse distribution of 
spherical micelles or a polydisperse distribution of rodlike ones. Sur- 
prisingly, the critical behavior in different CnEm/water systems appears to 
be nonuniversal, ~4 6) with critical indices depending on (n, m) and the 
solvent being H20 or D20. 

Naively, systems near the consolute point can be thought of as binary 
fluid mixtures, so that one expects them to belong to the Ising universality 
class. To understand qualitatively such nonuniversal behavior, 
Shnidman~79) recently proposed a lattice-gas model. It is based on 
constructing a coarse-grained representation of MBS with different types of 
aggregates in terms of Ising spins Sij,~ = + 1 on a cubic lattice (subscripts 
label sites) with + 1 spins corresponding to micellar sections, and - 1 spins 
to regions of comparable size predominantly occupied by solvent. A single 
+ 1 spin completely surrounded by - 1  spins is identified with a spherical 
micelle, a linear chain of + 1 spins surrounded by - 1 spins corresponds to 
a rodlike micelle, and a plane of + 1 spins surrounded by - 1  spins 
represents a bilayer. The short-range intermicellar attraction giving rise to 
phase separation was modeled in Ref. 7 by the ordinary ferromagnetic Ising 
interaction. As usual, a homogeneous magnetic field H plays the role of the 
chemical potential for micelles. A key ingredient, which distinguishes this 
model from Ising's, is the representation of some of the shorter ranged 
intramicellar interactions responsible for aggregation. Since, in the model, 
an entire micelle section is mapped into a single spin, only energy differen- 
ces between spherical and rodlike micelles can be considered. Indeed, 
existing thermodynamic theories of micellar structure (2)'5 show that the 
internal (free) energy associated with a spherical micelle and a spherical 
end-cap section of comparable size in a rodlike micelle is higher than the 
intramicellar energy of a cylindrical section of the same size. In the Ising- 
spin language, such excess energies can be modeled by assigning additional 
values H o and Ho/2 to the configurations with isolated + 1 spins (spherical 
micelles) and end spins of + 1 spin chains (end caps), respectively. 

To analyze the critical behavior of such a model, a standard renor- 
malization group approach was employed/7 9) Arguments were presented 
for H0 remaining invariant under renormalization of interactions and 

5 A phenomenological mean field theory of phase separation in MBS incorporating micellar 
structure considerations of Ref. 2 is presented in Ref. 10. 
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length scales on the intermicellar level. Assuming the marginality of Ho, a 
simple Migdal-Kadanoff scheme demonstrates that Ho enters into the 
recursions for T and H, resulting in an Ho-dependent fixed point. Further, 
critical indices v and 7 were found to decrease monotonically with 
increasing H0, in a manner reminiscent of experimental results in 
C, Em/water MBS. 

A major deficiency of this scenario for nonuniversality is the absence 
of an explicit Ising-spin Hamiltonian incorporating the intramicellar 
interactions responsible for aggregation. Several authors (1~ 14) critized this 
scenario and proposed explicit Hamiltonians which are supposed to 
represent the parameter H0. They found that Ho is in fact not marginal, 
but irrelevant, so that the critical behavior always belongs to the Ising 
universality class. Unfortunately, these Hamiltonians do not reproduce the 
correct energetics associated with configurations that represent spherical 
and rodlike micelles. In this paper we present an explicit Ising-spin 
Hamiltonian for MBS, incorporating the features listed above. 

For simplicity, and following earlier prac t i ce ,  (79"11-14) we first 
construct a two-dimensional version on a square lattice. The Hamiltonian 

is a sum of three terms, each standing for a physically different con- 
tribution: (a) 4~K, effective at the intramicellar length scale, representing 
many-body interactions responsible for self-association, and controlling the 
size and shape distribution of aggregates; (b) ~s, describing effective short- 
range attraction between the aggregates at the larger intermicellar length 
scale; and (c) ~f~t/, controlling the concentration of aggregates. 

-K, -(K,+ Ko)/Z -K, 
t i ) 

+ ; + - 6 -  

+ +~+_ a 

b 
Fig. 1. Local configurations and intramicellar energies associated with a +1 spin 
representing different types of micellar sections in the construction of Eq. (3). (a) A spherical 
micelle. (b) End-cap sections in rodlike micelles. (c) Cylindrical sections in rodlike micelles. 
The case KI > K0 > 0 is shown. Lines represent the micellar interface between amphiphiles ( + ) 
and water ( - ). For all other configurations, ~r is zero. 
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The first term, which incorporates the excess energy Ho, must dis- 
tinguish + 1 spins that represent spherical micelles from those representing 
micelle sections in rodlike micelles. We assign negative energies - K o  and 
- K 1 ,  respectively, for formation of these aggregates. For an end cap, the 
average - ( K o + K I ) / 2  is chosen. Thus, H 0 = K 1 - K 0 .  To keep J/fK as 
simple as possible, we specify, around a + 1 spin, the configurations of only 
the nearest neighbor (NN) spins. Refering to Fig. 1, these three configura- 
tions are, respectively, a + 1 spin with all four of its N N  sites occupied by 
- 1  spins, a + 1 spin with three of the four N N  sites coccupied by - 1  
spins, and a + 1 spin with precisely two N N  + 1 spins forming a straight 
line of three. 

To take into account these configurations and construct JfK explicitly, 
it is convenient to use lattice-gas variables (spin projection operators): 

t~, s = (1 + S~,j)/2, ii, j = (1 -S~,j)/2 (1) 

projecting onto S =  +1 and - 1 ,  respectively. For further convenience, 
define the bilinear products: 

Uij = t i -  1,j t i+ 1,j 

flit-- ti_ 1.jTi+ 1.g 

Wi_j = t i -  1,j~i+ 1,j ~- ti-- 1,jti+ 1,j 

(2a) 

(2b) 

(2c) 

and similiar ones with i <---)j. In terms of these operators, ovf K is 

-KoY  

- K I  

where we have suppressed 
after, summations are over 

t(uigtg + ~iu~) (3) 

all but the underlined indices. Here and here- 
all site indices. Note that the couplings involve 

up to five spins. For closer resemblance to real systems, .,uf K may be "finite- 
tuned" without introducing additional coupling constants, by specifying the 
configurations of spins in a larger neighborhood. For example, we can mul- 
tiply (3) by lip,q= _+ 1 ti+p,j+q, SO that the next nearest neighbor of a + 1 
spin is water. 

Next, in constructing the intermicellar interaction rigs, we take into 
account three important points. First, to overcome the problem o f  
polydispersity of rodlike micelles, it should be a sum of interactions 
between micellar sections rather than directly between micelles as a whole. 
Second, the range of the intermicellar interaction should be greater than 
one lattice spacing, since a single lattice spacing is already needed for 
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defining the narrow dimension of a micelle. For simplicity, we choose this 
range to be two lattice spacings. Third, to distinguish inter- from intra- 
micellar interactions, Jogs should not contribute to the latter. A Hamiltonian 
satisfying all these conditions is 

(4) 

with J >  0 for intermicellar attraction. Note that a two-spin ferromagnetic 
coupling of the form -JSI,j(SI+2,j+S~,j+2) satisfies the first two 
conditions, but not the third. 

Finally, 

~/~ = - H  ~ S 

represents the usual chemical potential for controlling the concentration of 
amphiphiles (micelles) in the grand canonical formulation. 

Summarizing, the explicit, total Hamiltonian we propose is 

Jog = ~eK + ~ j  + ~ u  (6) 

This Hamiltonian is defined at the coarsed-grained length scale given by 
the "narrow" micellar dimension. Unlike the Hamiltonian introduced in 
Ref. 9, it does not reflect properties of MBS associated with the finer length 
scale of monomers, such as the phenomenon of CMC. However, it has the 
advantage of being more amenable to computer simulations. 

The phase diagram associated with this model is displayed in a four- 
dimensional parameter space spanned by Ko, K1, J, and H. For K 1 .~ Ko, 
J,~ k~ T, and H < 0, the system is expected to be an isotropic monodisperse 
distribution of "spherical micelles." In the opposite limit, K1 >>K0, we 
expect a polydisperse distribution of "rodlike micelles." At large enough J, 
the system should separate into two isotropic phases: one micelle-poor and 
the other micelle-rich. Note that ~ f  contains odd-spin interactions, so that 
the critical point is unlikely to be at H =  0. We expect an upper consolute 
point if J is assumed to be independent of T. To obtain a coexistence curve 
with a lower consolute point such as in CnEm/water MBS, we may either 
introduce additional degrees of freedom (15) or assume a specific function 
J(T). In deed, there is some experimental evidence ~ on the T dependence 
of the effective attraction between amphiphile-coated mica surface in water. 
Finally, for K o~K1 and large H > 0 ,  a square lattice analog of the 
hexagonal lyotroic phase may occur; i.e., a periodic stacking of linear 
"rods" of indefinite length. 

Generalizing this model to a three-dimensional one on the cubic lattice 
is straightforward. Of course, sites are labeled by (i, j, k), so that the corn- 
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pact notation in (3) should be used with care. For example, uk means 
Ui, j,k_ = ti, j , k _ l t i ,  j ,k+ 1. For ~x ,  we need a new coupling, K2, to represent 
the formation of two-dimensional aggregates (planes of + 1 spins surroun- 
ded by - 1  spins), which are lattice analogs of coarse-grained micellar 
bilayers (Fig. lc). Note that couplings in ~,~,~ will involve up to seven spins, 
since a site now has six NN sites. Explicitly, YfK is 

2~K = --Ko ~ tft!~jfik - -- l( Ko + g l  ) 2 t(W i~tJ~tlr q- (liW "~tk -t- ~li_(tjWk ) 
_ - J _ _ 

- -  K 1  ~_a l(ui_~Q~lk + ~lildj~lk -[" ffli~Q1Ak) 

- I(K1 + K2) Y', t(wiu4~k + uiwj~k_ + u~wj~k + u~jwk 

+ w ~ u k  + ~iwjuk + ~!u~wk_) 

- K2 ~ t(ui_ujfik + u~juk + ~iu.uk) (7) _ - J _ 

For Yfj, we must add a third term, tuk, to (4). Finally, the form of YfH is 
still (5) and the total W is just the sum of the three. 

Qualitative remarks regarding the expected phase diagram, similar to 
those for the two-dimensional model, apply here. Of course, the 
"hexagonal" phase would appear as parallel "rods" arranged in a square 
array when K~ >> K0, K2 and H is large. The analog of the lamellar phase 
should occur when K 2 ~ K o ,  K~, i.e., periodic stacking of "bilayers" 
represented by planes of + 1 spins. 

One motivation for constructing an explicit .~  is to provide a concrete 
model for Monte Carlo studies. It would be interesting to check if the con- 
jectured phase diagram is correct. Further, we believe that this J f  properly 
represents the description given in Ref. 7, arguing for the existence of a 
marginal interaction as the origin of nonuniversality at the consolute 
point. If simulations find a coexistence of two isotropic phases at low 
concentrations (m , ,~ -  1), then more sophisticated renormalization group 
techniques can be brought in to confirm or reject, the mechanism for non- 
universality proposed. At present, the criticisms (1~ ~4) of this mechanism do 
not help to clarify the situation, since they are based on inappropriate 
models or crude renormalization group schemes. For the remainder of this 
paper, we point out some essential differences between our Hamiltonian 
and others in the literature. 

Caflisch etal. (H) claimed that the Hamiltonian implied in Ref. 7 is 
equivalent to the ordinary Ising model with NN ferromagnetic two-spin 
couplings. Our Hamiltonian reflects a system with two essential length 
scales associated with inter- and intramicellar interactions, the latter 
coupling a spin and all its nearest neighbors, so as to reflect different 
energies associated with micelle sections in different local geometries. 



Micellar Binary Solutions 845 

Reatto has proposed (12'13) an intramicellar interaction in this spirit. 
However, his energetics is quite distinct from ours, as a comparison 
between Figs. 1 and 2 shows. Indeed, the spin configurations repesenting 
spherical micelles and end-cap sections of rodlike micelles [cases (a) and 
(b) in both figures] are the same. However, the number of configurations 
he assigns the intramicellar energy associated with a cylindrical section of 
rodlike micelles is much greater than in our model (Fig. 2c versus Fig. lc). 
We believe that these additional local configurations misrepresent a coarse- 
grained MBS in two important ways. First, an essential characteristic of 
aggregates is their having at least one "narrow" dimension (which is essen- 
tially the combined length of two surfactant tails). In our coarse-grained 
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Fig. 2. Local configurations and intramicellar energies in Reatto's model. (a) A spherical 
micelle. (b) End-cap secions in rodlike micelles. (c) Cylindrical sections in rodlike micelles. 
Only configurations identical to those of Fig. 1 have the micellar interface outlined. 
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picture, a single + 1 spin represents a micellar section, so that the lattice 
spacing is this "narrow" dimension. Therefore, both NN sites along at least 
one of the axes should be occupied by - 1  spins. Second, since 
intramicellar energies are strongly dependent on the local geometry of sur- 
factant packing, right-angle bending of rodlike miscelles on the length scale 
of the "narrow" dimension should be very unfavorable. Reatto assigns the 
same energy to such "bent" configurations as to unbent ones. Assigning the 
same energy to these extra configurations destroys local anisotropy, an 
essential feature of MBS with rodlike micelles. Moreover, Reatto's model 
does not make the distinction between length scales associated with inter- 
and intramicellar interactions, since his intermicellar interaction has the 
range of only one lattice spacing. For these reasons, we do not believe that 
Reatto's Hamiltonian is a viable model for MBS. 

Crisanti and Peliti (14) pointed out correctly that recursion relations 
dependent on Ho can be reproduced by starting with the ordinary Ising 
model and manipulating the bonds to be moved in the Migdal-Kadanoff 
scheme. This is a criticism of the inadequacy and uncertainty in using this 
scheme, showing the necessity of performing a more dependable renor- 
malization group analysis on a more realistic Hamiltonian. We believe that 
the ones we proposed should be adequate for this study. 

Finally, we briefly compare our model with Widom's, (17'18) also 
couched in the language of Ising spins and lattice gas. The latter is designed 
for microemulsions, which, unlike our binary mixtures, consist of three 
components (e.g., water, surfactant, oil). The micelles in microemulsions 
are swollen with the third component, and there is no natural length scale 
for coarse-grained representation of micellar sections such as the "narrow" 
micellar dimension in MBS. Since amphiphiles belonging to a single micelle 
may be further apart than ones in neighboring micelles, it is difficult to 
make the distinction between inter- and in tramicel lar  interactions. Further, 
packing constraints on surfactants are more relaxed in microemulsions 
than in MBS. Consequently, micelles in microemulsions cannot be 
represented by just a few fixed shapes on a single coarse-grained level. 
Preferred local geometries in microemulsions are best described in terms of 
spontaneous local curvature ~t8'19) of the micellar interface. Thus, lattice-gas 
models for microemulsions (17'18) assign + / -  spins to water/oil regions, 
allowing all the amphiphiles to reside on the interface between them. 
Hamiltonians represent lattice analogs of spontaneous local curvature of 
this interface. In the limit of vanishing concentration of one of the 
nonsurfacant components, these models would have neither interfaces nor 
surfactants, instead of a viable model for MBS. Hence our model is quite 
distinct from lattice-gas models for microemulsions, and is useful in very 
different physical situations. 
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NOTE ADDED IN PROOF 

Fisher proposed, in Phys. Rev. Lett. 57:1911 (1986), an alternative 
scenario where the true critical beha{6our belongs to the Ising universality 
class and the observed nonuniversality arises from the details of crossover. 
He pointed out the importance of further neighbor interactions if a lattice 
model were to reproduce such behavior. We propose an explicit 
Hamiltonian with (effectively) competing interactions. The phase diagram is 
expected to be richer and critical behavior more difficult to predict. We 
hope that simulations will point a clearer direction for further analysis. 
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